Continuous Population Age State Model Epidemic

[1]

V. Andreasen, Instability in an SIR-model with age-dependent susceptibility, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Wuerz Publ., (1995), 3-14.

[2]

E. Beretta and V. Capasso, Global stability results for a multigroup SIR epidemic model, in Mathematical Ecology (eds. T.G. Hallam, L.J. Gross and S.A. Levin), World Scientific, (1988), 317-342.

[3]

S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behavior of an age-structured epidemic model, SIAM J. Math. Anal., 22 (1991), 1065-1080.doi: 10.1137/0522069.

[4]

Y. Cha, M. Iannelli and F. A. Milner, Stability change of an epidemic model, Dynam. Syst. Appl., 9 (2000), 361-376.

[5]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324.

[6]

O. Diekmann, J. A. P. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, Princeton and Oxford, 2013.

[7]

K. Dietz, Transmission and control of arbovirus disease, in Proc. SIMS Conf. on Epidemiology (eds. D. Ludwig and K.L. Cooke), SIAM, (1975), 104-121.

[8]

Z. Feng, W. Huang and C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Diff. Equat., 218 (2005), 292-324.doi: 10.1016/j.jde.2004.10.009.

[9]

A. Franceschetti, A. Pugliese and D. Breda, Multiple endemic states in age-structured SIR epidemic models, Math. Biosci. Eng., 9 (2012), 577-599.doi: 10.3934/mbe.2012.9.577.

[10]

D. Greenhalgh, Analytical results on the stability of age-structured recurrent epidemic models, IMA J. Math. Appl. Med. Biol., 4 (1987), 109-144.doi: 10.1093/imammb/4.2.109.

[11]

G. Gripenberg, On a nonlinear integral equation modelling an epidemic in an age-structured population, J. reine angew. Math., 341 (1983), 54-67.doi: 10.1515/crll.1983.341.54.

[12]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canadian Appl. Math. Quart., 14 (2006), 259-284.

[13]

H. J. A. M. Heijmans, The dynamical behaviour of the age-size-distribution of a cell population, in The Dynamics of Physiologically Structured Populations (eds. J.A.J. Metz and O. Diekmann), Springer, 68 (1986), 185-202.doi: 10.1007/978-3-662-13159-6_5.

[14]

H. W. Hethcote, An immunization model for a heterogeneous population, Theor. Popul. Biol., 14 (1978), 338-349.doi: 10.1016/0040-5809(78)90011-4.

[15]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.doi: 10.1137/S0036144500371907.

[16]

F. Hoppensteadt, An age dependent epidemic model, J. Franklin Inst., 297 (1974), 325-333.doi: 10.1016/0016-0032(74)90037-4.

[17]

H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process, Math. Popul. Studies, 1 (1988), 49-77.doi: 10.1080/08898488809525260.

[18]

H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434.doi: 10.1007/BF00178326.

[19]

H. Inaba, Endemic threshold results for age-duration-structured population model for HIV infection, Math. Biosci., 201 (2006), 15-47.doi: 10.1016/j.mbs.2005.12.017.

[20]

H. Inaba and H. Nishiura, The basic reproduction number of an infectious disease in a stable population: the impact of population growth rate on the eradication threshold, Math. Model. Nat. Phenom., 3 (2008), 194-228.doi: 10.1051/mmnp:2008050.

[21]

H. Inaba, The Malthusian parameter and $R_0$ for heterogeneous populations in periodic environments, Math. Biosci. Eng., 9 (2012), 313-346.doi: 10.3934/mbe.2012.9.313.

[22]

H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348.doi: 10.1007/s00285-011-0463-z.

[23]

T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer, Berlin, 1995.

[24]

K. Kawachi, Deterministic models for rumor transmission, Nonlinear Analysis RWA., 9 (2008), 1989-2028.doi: 10.1016/j.nonrwa.2007.06.004.

[25]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 75-83.doi: 10.1007/s11538-008-9352-z.

[26]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, 1st edition, Noordhoff, Groningen, 1964.

[27]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Am. Math. Soc. Transl., 1950 (1950), 128pp.

[28]

T. Kuniya, Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model, Nonlinear Analysis RWA., 12 (2011), 2640-2655.doi: 10.1016/j.nonrwa.2011.03.011.

[29]

J. P. Lasalle, The Stability of Dynamical Systems, 2nd edition, SIAM, Philadelphia, 1976.

[30]

X. Z. Li, J. X. Liu and M. Martcheva, An age-structured two-strain epidemic model with super-infection, Math. Biosci. Eng., 7 (2010), 123-147.doi: 10.3934/mbe.2010.7.123.

[31]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.doi: 10.1080/00036810903208122.

[32]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.doi: 10.1137/0119060.

[33]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.doi: 10.3934/mbe.2012.9.819.

[34]

A. G. McKendrick, Application of mathematics to medical problems, Proc. Edinburgh Math. Soc., (1925), 98-130.doi: 10.1017/S0013091500034428.

[35]

A. V. Melnik and A. Korobeinikov, Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility, Math. Biosci. Eng., 10 (2013), 369-378.doi: 10.3934/mbe.2013.10.369.

[36]

R. Nagel, One-Parameter Semigroups of Positive Operators, 1st edition, Springer, Berlin, 1986.doi: 10.1007/BFb0074922.

[37]

I. Sawashima, On spectral properties of some positive operators, Nat. Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64.

[38]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, 1st edition, Amer. Math. Soc., Providence, 2011.

[39]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286-2291.doi: 10.1016/j.camwa.2010.08.020.

[40]

H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases, in Differential Equations Models in Biology, Epidemiology and Ecology (eds. S. Busenberg and M. Martelli), Springer, 92 (1991), 139-158.doi: 10.1007/978-3-642-45692-3_10.

[41]

D. W. Tudor, An age-dependent epidemic model with application to measles, Math. Biosci., 73 (1985), 131-147.doi: 10.1016/0025-5564(85)90081-1.

[42]

S. Tuljapurkar and A. M. John, Disease in changing populations: Growth and disequilibrium, Theor. Popul. Biol., 40 (1991), 322-353.doi: 10.1016/0040-5809(91)90059-O.

[43]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6.

[44]

J. A. Walker, Dynamical Systems and Evolution Equations, 1st edition, Plenum Press, New York and London, 1980.

[45]

J. Wang, J. Zu, X. Liu, G. Huang and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, J. Biol. Syst., 20 (2012), 235-258.doi: 10.1142/S021833901250009X.

[46]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, 1st edition, Marcel Dekker, New York and Basel, 1985.

[47]

K. Yosida, Functional Analysis, 6th edition, Springer, Berlin, 1980.

yulovery.blogspot.com

Source: https://www.aimsciences.org/article/doi/10.3934/dcdsb.2016109

0 Response to "Continuous Population Age State Model Epidemic"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel